Community
Throughout the years I have worked in credit and collections, either doing credit analysis related to commercial lending decisions or identifying the elements that should be weighed when reviewing trade credit lines. I have seen many different scoring models used for many different purposes including judgmental scoring models that focus on the use of credit bureau data and statistical behavior models that focus on the use of payment history.
Scoring models help credit professionals determine the credit worthiness of prospects, help evaluate existing customer credit worthiness, and even help prioritize collection activities so that the company can get paid faster. While most people agree that the genesis of credit scoring was in the consumer mortgage business, over the years the models have proved to be an extremely valuable tool in the commercial credit world.
Even though it is not the first thing most of us think of when discussing credit scoring, prioritizing collection activity (also known as risk-based collections) is a natural and sensible use of scoring. In my experience, statistical behavior modeling produces the best scores for prioritizing collections. Creating the statistical models to produce credit scores is not simple. However, it is actually easy to use the resulting scores. Risk scores allow you to group customers into risk categories, which can then be used in conjunction with an associated value called “cash at risk” to prioritize collection activities. Collectors can prioritize their activities for those customers with not only the highest probability of delinquency or loss but also with the largest “cash at risk” values. The scores are also predictive, which means they are typically forecasting future behavior – behavior that can be changed with proper collection activity.
A statistical model based on payment behavior is significantly different than the judgmental scoring many of us do when making new customer decisions or evaluating the credit limits of existing customers. Since most of us are more familiar with judgmental scoring versus statistical scoring, I thought I would share five comparisons between the two that lead me to recommend statistical scoring for risk-based collections:
Are you only using judgmental models and are they working? Have you tried incorporating statistical modeling into your risk-based collection strategies? Stay tuned for Part II when I discuss how to manage credit lines. I’d like to hear from you.
This content is provided by an external author without editing by Finextra. It expresses the views and opinions of the author.
Ugne Buraciene Group CEO at payabl.
16 January
Ritesh Jain Founder at Infynit / Former COO HSBC
15 January
Bo Harald Chairman/Founding member, board member at Trust Infra for Real Time Economy Prgrm & MyData,
13 January
Welcome to Finextra. We use cookies to help us to deliver our services. You may change your preferences at our Cookie Centre.
Please read our Privacy Policy.